Roll No. Total No. of Pages: 02

Total No. of Questions: 07

BCA (2009 to 2010 Batch) (Sem.-4) MATHEMATICS-II

(Computer Oriented Method)

Subject Code: BC-301 Paper ID: [B0227]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.-
- SECTION-B contains SIX questions carrying TEN marks each and students has 2. to attempt any FOUR questions.

SECTION-A

1. Write briefly:

- (a) Find adjoint of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ papers
- (b) If $A = \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 \\ 2 & -5 \end{bmatrix}$ prove that (AB)' = B'A' where A' denotes transpose of A.
- (c) Find mean of first *n* natural numbers.
- (d) Find median of 2, 4, 7, 4, 9, 3, 4, 2, 3
- (e) If $y = x^n . n^x$, find $\frac{dy}{dx}$.
- (f) Evaluate $\int x \log x \, dx$
- (g) Evaluate $\int \frac{x}{(x-1)(x-2)} dx$
- (h) If $y = \log(\log x)$, find $\frac{dy}{dx}$
- (i) State Trapezoidal rule for finding value of a definite integral.
- (j) Define Skewness and Kurtosis.

SECTION-B

2. Let
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 find A^{-1} and prove that $A^3 = A^{-1}$

3. (a) Solve by Gauss Elimination method

$$x + y + z = 3$$
, $2x + 3y + z = 6$, $x - y - z = -3$

(b) Calculate the mean deviation from mean for the following data:

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 5 8 12 28 20 10 10

4. (a) Calculate S.D. from the following data:

 $x \rightarrow 9 \qquad 8 \qquad 7 \qquad 6 \qquad 5$ $f \rightarrow 1 \qquad 2 \qquad 1 \qquad 2 \qquad 2$ 1

(b) Calculate first four moments of following distribution about mean:

 $x \rightarrow 0 \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 3 \qquad 0 \qquad 7$ $f \rightarrow \qquad 1 \qquad 8 \qquad 28 \qquad 50 \qquad 70 \qquad 56 \qquad 28 \qquad 8 \qquad 1$

- - (b) Find local maximum and local minimum values of $f(x) = x^3 27x + 3$.
- 6. (a) Evaluate $\int (\log x)^2 dx$
 - (b) Evaluate $\int_{-1}^{1} 5x^4 \sqrt{x^5 + 1} \, dx$
- 7. (a) Evaluate by Trapezoidal rule $\int_{0}^{2} \frac{dx}{1+x^4}$ taking n=4.
 - (b) Apply Simpson's $\left(\frac{1}{3}\right)$ rule to evaluate $\int_{0}^{2} \frac{dx}{1+x^4}$ taking n=4. Give answer to 3 places of decimal.